资源类型

期刊论文 64

会议信息 1

会议视频 1

年份

2023 10

2022 9

2021 2

2020 2

2019 7

2018 4

2017 2

2016 2

2015 1

2014 2

2013 2

2012 1

2011 4

2010 2

2009 2

2008 3

2007 5

2005 1

2003 1

2002 3

展开 ︾

关键词

9 + 2结构 1

cyp17a1 1

Agent 1

CMAQ模型 1

FY-3卫星 1

Inorganic Chemistry 1

Organic Chemistry 1

PM2.5 1

Polymer 1

万病归宗 1

三经思想 1

两性异形 1

中医创新理论体系 1

中药创新体系 1

临床可行性 1

二氧化硅 1

产品设计 1

人工智能 1

人工纤毛 1

展开 ︾

检索范围:

排序: 展示方式:

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 516-524 doi: 10.1007/s11705-022-2238-z

摘要: All-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells have been attracting growing interest due to superior performance stability and low cost. However, low light absorbance and large charge recombination at TiO2/CsPbBr3 interface or within CsPbBr3 film still prevent further performance improvement. Herein, we report devices with high power conversion efficiency (9.16%) by introducing graphene oxide quantum dots (GOQDs) between TiO2 and perovskite layers. The recombination of interfacial radiation can be effectively restrained due to enhanced charge transfer capability. GOQDs with C-rich active sites can involve in crystallization and fill within the CsPbBr3 perovskite film as functional semiconductor additives. This work provides a promising strategy to optimize the crystallization process and boost charge extraction at the surface/interface optoelectronic properties of perovskites for high efficient and low-cost solar cells.

关键词: all inorganic     perovskite solar cells     graphene oxide quantum dots     high performance     stability    

All-inorganic TiO/CsAgBiBr composite as highly efficient photocatalyst under visible light irradiation

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1925-1936 doi: 10.1007/s11705-023-2344-6

摘要: In recent years, limited photocatalysis efficiency and wide band gap have hindered the application of TiO2 in the field of photocatalysis. A leading star in photocatalysis has been revealed as lead-free Cs2AgBiBr6 double halide perovskite nanocrystals, owing to its strong visible light absorption and tunable band gap. In this work, this photocatalytic process was facilitated by a unique TiO2/Cs2AgBiBr6 composite, which was identified as an S-cheme heterojunction. TiO2/Cs2AgBiBr6 composite was investigated for its structure and photocatalytic behavior. The results showed that when the perovskite dosage is 40%, the photocatalytic rate of TiO2 could be boosted to 0.1369 min–1. This paper discusses and proposes the band gap matching, carrier separation, and photocatalytic mechanism of TiO2/Cs2AgBiBr6 composites, which will facilitate the generation of new ideas for improving TiO2’s photocatalytic performance.

关键词: Cs2AgBiBr6 nanocrystals     visible-light photocatalyst     Cs2AgBiBr6/TiO2 heterojunction    

Engineering Management to Serve All Human Beings

Yong-fu Sun

《工程管理前沿(英文)》 2014年 第1卷 第3期   页码 231-231 doi: 10.15302/J-FEM-2014032

Formation of secondary inorganic aerosol in a frigid urban atmosphere

《环境科学与工程前沿(英文)》 2022年 第16卷 第2期 doi: 10.1007/s11783-021-1452-0

摘要:

•Harbin showed relatively high threshold RH (80%) for apparent increase of SOR.

关键词: Haze     Sulfate     Nitrate     Heterogeneous chemistry     Biomass burning     Northeast China    

Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID

《医学前沿(英文)》 2022年 第16卷 第1期   页码 102-110 doi: 10.1007/s11684-021-0850-9

摘要: Consecutively hospitalized patients with confirmed coronavirus disease 2019 (COVID-19) in Wuhan, China were retrospectively enrolled from January 2020 to March 2020 to investigate the association between the use of renin–angiotensin system inhibitor (RAS-I) and the outcome of this disease. Associations between the use of RAS-I (angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB)), ACEI, and ARB and in-hospital mortality were analyzed using multivariate Cox proportional hazards regression models in overall and subgroup of hypertension status. A total of 2771 patients with COVID-19 were included, with moderate and severe cases accounting for 45.0% and 36.5%, respectively. A total of 195 (7.0%) patients died. RAS-I (hazard ratio (HR)=0.499, 95% confidence interval (CI) 0.325–0.767) and ARB (HR=0.410, 95% CI 0.240–0.700) use was associated with a reduced risk of all-cause mortality among patients with COVID-19. For patients with hypertension, RAS-I and ARB applications were also associated with a reduced risk of mortality with HR of 0.352 (95% CI 0.162–0.764) and 0.279 (95% CI 0.115–0.677), respectively. RAS-I exhibited protective effects on the survival outcome of COVID-19. ARB use was associated with a reduced risk of all-cause mortality among patients with COVID-19.

关键词: COVID-19     RAS inhibitor     hypertension     all-cause mortality    

Spectrokinetics study of probable effects of diverse inorganic ions on bleaching of dye

Rafia AZMAT, Masooda QADRI, Fahim UDDIN

《化学科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 131-138 doi: 10.1007/s11705-010-0556-z

摘要: Toluidine blue (TB) is an important anticoagulant metachromasia molecule showing a pronounced variation in the visible spectrum due to the aggregation phenomenon and electrostatic interaction with the charged synthetic and biologic polymers. The current study describes the interactive role of diverse inorganic material ions on the bleaching of toluidine blue (tolonium chloride) (TB ) with urea in acidic and basic media using the spectrophotometric technique. The spectra of TB and urea with different cations and anions were monitored and their characteristic features are presented here. The negative effect of added cations on reduction may be the result of altered electron pathways which led to suppression of the reduction/bleaching of TB, while a slight decrease in dye reduction by added anions may be due to the scavenging of the OH* radical. It has been observed in the case of Co that in addition to the electron-transfer reaction, other processes like layer and precipitate formation also appear to be taking place. The dye bleaching process followed pseudo first order kinetics with respect to TB, urea, and H ion, whereas significant decoloration in the presence of urea proved that reductants control the redox reaction. No decoloration in acidic medium with diverse ions was seen compared to alkaline media, showing that water pH played an important role in the bleaching of dye. The reduction/bleaching of dye was investigated at different temperatures, and energy parameters were evaluated for a TB -Urea reaction, including the energy of activation ( = 39.60 kJ·mol ), enthalpy of activation (? = 34?kJ·mol ), entropy of activation (? = 146.5 kJ mol ·K ), and free energy of activation (ΔG* = -52.35 kJ·mol ). A mechanism of interaction of diverse ions in dye bleaching and a mechanism of reduction based on the above findings is proposed.

关键词: TB     diverse ions     suppress     decoloration    

Organic and inorganic phosphorus uptake by bacteria in a plug-flow microcosm

Jinbo ZHAO, Xuehua LIU

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 173-184 doi: 10.1007/s11783-013-0494-3

摘要: Phosphorus (P) is a vital nutrient for sustaining natural water productivity. Both particulate and dissolved forms of organic and inorganic P are potentially important sources of bioavailable P for primary and secondary producers. A microcosm system to imitate the bacterial community in Plym river sediment and pore water is described and bacterial uptake rates for inorganic and organic phosphorus are presented in this paper. The aim of this study was to investigate the uptake of two organic phosphorus compounds (phytic acid and D-glucose-6-phosphate) by freshwater bacteria. The bioreactors comprise glass columns packed with two types of small glass beads on which bacterial biofilm can develop. The glass beads with different porosity were introduced to simulate River SPM. The selected P compounds spiked into the inflow of the microcosm, and measured the step change of P concentration in the outflow to investigate the behavior of bacterial uptake of nutrients. The results showed that organic phosphorus was converted into inorganic phosphorus but the conversion rate depended on the type of phosphorus species. One experiment suggested that phytic acid (refractory) could displace phosphate from the biofilm surface; the other experiment showed that D-glucose-6-phosphate (labile) could be hydrolysed and utilized easily by the bacteria. The results also suggested that bacteria might break down the C-P bonds to utilize the carbon. Further experiments should investigate the effect of varying the C:N:P ratio in the microcosm system to determine which nutrient limits bacteria uptake.

关键词: organic phosphorus     bacteria     uptake    

ALL FREE” — a novel design concept of applying partial oxidation process to vehicle

Ling LIN, Wenshuang LIN, Qingbiao LI, Yao ZHOU,

《化学科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 207-212 doi: 10.1007/s11705-009-0240-3

摘要: With the rapid expansion of the global motor vehicle population, the transportation sector has taken up a growing proportion among all the carbon dioxide emission-related sectors. To contribute to solutions of the carbon dioxide-oriented problem in transportation, this paper proposes the “ALL FREE” concept that applies partial oxidation process instead of the conventional complete oxidation to vehicle engines. In such an engine, the fuels are partially oxidized into corresponding chemical products, which, as a result, enable the process to be theoretically free of CO, while the heat output of the partial oxidation could drive the vehicle. On the other hand, the resulting products are of great value, which could decrease or even counteract the cost of fuels in transportation. In this paper, the thermodynamic and kinetic data (e.g., the heat output and heat release rate) of five selected partial oxidation reactions were calculated at length to demonstrate and exemplify the theoretical feasibility of the “ALL FREE” concept. It turned out that the partial oxidation of -butane to maleic anhydride has the most potential to meet the basic requirements of this concept. To sum up, this design concept is of significant application potential for the reduction of CO emissions in the transportation industry, although there remain many technical challenges.

关键词: oxidation process     CO     complete oxidation     ALL FREE     -butane    

Immobilization of laccase on organic–inorganic nanocomposites and its application in the removal of phenolic

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 867-879 doi: 10.1007/s11705-022-2277-5

摘要: Polydopamine-functionalized nanosilica was synthesized using an inexpensive and easily obtainable raw material, mild reaction conditions, and simple operation. Subsequently, a flexible spacer arm was introduced by using dialdehyde starch as a cross-linking agent to bind with laccase. A high loading amount (77.8 mg∙g‒1) and activity retention (75.5%) could be achieved under the optimum immobilization conditions. Thermodynamic parameters showed that the immobilized laccase had a lower thermal deactivation rate constant and longer half-life. The enhancement of thermodynamic parameters indicated that the immobilized laccase had better thermal stability than free laccase. The residual activity of immobilized laccase remained at about 50.0% after 30 days, which was 4.0 times that of free laccase. Immobilized laccase demonstrated excellent removal of phenolic pollutants (2,4-dichlorophenol, bisphenol A, phenol, and 4-chlorophenol) and perfect reusability with 70% removal efficiency retention for 2,4-dichlorophenol after seven cycles. These results suggested that immobilized laccase possessed great reusability, improved thermal stability, and excellent storage stability. Organic–inorganic nanomaterials have a good application prospect for laccase immobilization, and the immobilized laccase of this work may provide a practical application for the removal of phenolic pollutants.

关键词: polydopamine     pollutant removal     thermodynamic     phenolic pollutants     immobilized laccase    

The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made

Remus I. Iacobescu, Valérie Cappuyns, Tinne Geens, Lubica Kriskova, Silviana Onisei, Peter T. Jones, Yiannis Pontikes

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 317-327 doi: 10.1007/s11705-017-1622-6

摘要: This study reports on the impact of the curing conditions on the mechanical properties and leaching of inorganic polymer (IP) mortars made from a water quenched fayalitic slag. Three similar IP mortars were produced by mixing together slag, aggregate and activating solution, and cured in three different environments for 28 d: a) at 20 °C and relative humidity (RH) ~ 50% (T20RH50), b) at 20 °C and RH≥90% (T20RH90) and c) at 60 °C and RH ~ 20% (T60RH20). Compressive strength (EN 196-1) varied between 19 MPa (T20RH50) and 31 MPa (T20RH90). This was found to be attributed to the cracks formed upon curing. Geochemical modelling and two leaching tests were performed, the EA NEN 7375 tank test, and the BS EN 12457-1 single batch test. Results show that Cu, Ni, Pb, Zn and As leaching occurred even at high pH, which varied between 10 and 11 in the tank test’s leachates and between 12 and 12.5 in the single batch’s leachates. Leaching values obtained were below the requirements for non-shaped materials of Flemish legislation for As, Cu and Ni in the single batch test.

关键词: inorganic polymer     geochemical leaching modelling     heavy metals     recycling     non-ferrous fayalitic slag     curing    

Primary health care for all by 2020: The systematic reform of the medical and health system in China

《医学前沿(英文)》 2010年 第4卷 第1期   页码 3-7 doi: 10.1007/s11684-010-0024-7

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites

Lifu YAN, Lingling ZHAO, Guiting YANG, Shichao LIU, Yang LIU, Shangchao LIN

《能源前沿(英文)》 2022年 第16卷 第4期   页码 581-594 doi: 10.1007/s11708-022-0831-y

摘要: Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling, space power generation, deep water power generation, and temperature control, but the search for essential thermoelectric materials with high performance still remains a great challenge. As an emerging low cost, solution-processed thermoelectric material, inorganic metal halide perovskites CsPb(I1–xBrx)3 under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory. It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I1–xBrx)3 synergistically. Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breaking-induced intrinsic strains. Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass, leading to excellent charge transport properties. Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner, surpassing the impact from intrinsic strains. Both anisotropic charge transport properties andZT values are sensitive to the direction and magnitude of strain, showing a wide range of variation from 20% to 400% (with a ZT value of up to 1.85) compared with unstrained cases. The power generation efficiency of the thermoelectric device can reach as high as approximately 12% using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K, surpassing the performance of many existing bulk thermoelectric materials.

关键词: inorganic metal halide perovskites     mechanical deformation     thermoelectrics     first-principle calculations     Boltzmann transport theory    

Thermal transport in organic/inorganic composites

Bin LIU, Lan DONG, Qing XI, Xiangfan XU, Jun ZHOU, Baowen LI

《能源前沿(英文)》 2018年 第12卷 第1期   页码 72-86 doi: 10.1007/s11708-018-0526-6

摘要: Composite materials, which consist of organic and inorganic components, are widely used in various fields because of their excellent mechanical properties, resistance to corrosion, low-cost fabrication, etc. Thermal properties of organic/inorganic composites play a crucial role in some applications such as thermal interface materials for micro-electronic packaging, nano-porous materials for sensor development, thermal insulators for aerospace, and high-performance thermoelectric materials for power generation and refrigeration. In the past few years, many studies have been conducted to reveal the physical mechanism of thermal transport in organic/inorganic composite materials in order to stimulate their practical applications. In this paper, the theoretical and experimental progresses in this field are reviewed. Besides, main factors affecting the thermal conductivity of organic/inorganic composites are discussed, including the intrinsic properties of organic matrix and inorganic fillers, topological structure of composites, loading volume fraction, and the interfacial thermal resistance between fillers and organic matrix.

关键词: thermal conductivity     organic/inorganic composites     effective medium theory     thermal percolation theory     interfacial thermal resistance    

用于超快电子器件的全通型波导 Article

Desong Wang, Ke Wu

《工程(英文)》 2023年 第30卷 第11期   页码 49-54 doi: 10.1016/j.eng.2023.04.005

摘要:

Ultrashort pulse transmission has been recognized as a primary problem that fundamentally hinders the development of ultrafast electronics beyond the current nanosecond timescale. This requires a transmission line or waveguide that exhibits an all-pass frequency behavior for the transmitted ultrashort pulse signals. However, this type of waveguiding structure has not yet been practically developed; groundbreaking innovations and advances in signal transmission technology are urgently required to address this scenario. Herein, we present a synthesized all-pass waveguide that demonstrates record guided-wave controlling capabilities, including eigenmode reshaping, polarization rotation, loss reduction, and dispersion improvement. We experimentally developed two waveguides for use in ultrabroad frequency ranges (direct current (DC)-to-millimeter-wave and DC-to-terahertz). Our results suggest that the waveguides can efficiently transmit picosecond electrical pulses while maintaining signal integrity. This waveguide technology is an important breakthrough in the evolution of ultrafast electronics, providing a path towards frequency-engineered ultrashort pulses for low-loss and low-dispersion transmissions.

关键词: All-pass waveguide     Ultrashort pulse     Picosecond transmission     Ultrafast electronics     Terahertz technology     Mode-selective transmission line    

Flame-retardant properties of

Kumar Sai SMARAN, Rajashekar BADAM, Raman VEDARAJAN, Noriyoshi MATSUMI

《能源前沿(英文)》 2019年 第13卷 第1期   页码 163-171 doi: 10.1007/s11708-018-0554-2

摘要: This paper focuses on the superiority of organic-inorganic hybrid ion-gel electrolytes for lithium-ion batteries (LiBs) over commercial electrolytes, such as 1 M LiPF in 1:1 ethylene carbonate (EC): dimethyl carbonate (DMC) {1 M LiPF -EC: DMC}, in terms of their flame susceptibility. These ion-gel electrolytes possess ionic liquid monomers, which are confined within the borosilicate or silicate matrices that are ideal for non-flammability. Naked flame tests confirm that the organic-inorganic hybrid electrolytes are less susceptible to flames, and these electrolytes do not suffer from a major loss in terms of weight. In addition, the hybrids are self-extinguishable. Therefore, these hybrids are only oxidized when subjected to a flame unlike other commercial electrolytes used in lithium-ion batteries. Supplementary analyses using differential scanning calorimetric studies reveal that the hybrids are glassy until the temperature reaches more than 100°C. The current results are consistent with previously published data on the organic-inorganic hybrids.

关键词: inorganic polymeric borosilicate network     organic-inorganic hybrids     self-extinguishability     nonflammability     lithium batteries     flame-retardants    

标题 作者 时间 类型 操作

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified

期刊论文

All-inorganic TiO/CsAgBiBr composite as highly efficient photocatalyst under visible light irradiation

期刊论文

Engineering Management to Serve All Human Beings

Yong-fu Sun

期刊论文

Formation of secondary inorganic aerosol in a frigid urban atmosphere

期刊论文

Renin--angiotensin system inhibitor is associated with the reduced risk of all-cause mortality in COVID

期刊论文

Spectrokinetics study of probable effects of diverse inorganic ions on bleaching of dye

Rafia AZMAT, Masooda QADRI, Fahim UDDIN

期刊论文

Organic and inorganic phosphorus uptake by bacteria in a plug-flow microcosm

Jinbo ZHAO, Xuehua LIU

期刊论文

ALL FREE” — a novel design concept of applying partial oxidation process to vehicle

Ling LIN, Wenshuang LIN, Qingbiao LI, Yao ZHOU,

期刊论文

Immobilization of laccase on organic–inorganic nanocomposites and its application in the removal of phenolic

期刊论文

The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made

Remus I. Iacobescu, Valérie Cappuyns, Tinne Geens, Lubica Kriskova, Silviana Onisei, Peter T. Jones, Yiannis Pontikes

期刊论文

Primary health care for all by 2020: The systematic reform of the medical and health system in China

期刊论文

High performance solid-state thermoelectric energy conversion via inorganic metal halide perovskites

Lifu YAN, Lingling ZHAO, Guiting YANG, Shichao LIU, Yang LIU, Shangchao LIN

期刊论文

Thermal transport in organic/inorganic composites

Bin LIU, Lan DONG, Qing XI, Xiangfan XU, Jun ZHOU, Baowen LI

期刊论文

用于超快电子器件的全通型波导

Desong Wang, Ke Wu

期刊论文

Flame-retardant properties of

Kumar Sai SMARAN, Rajashekar BADAM, Raman VEDARAJAN, Noriyoshi MATSUMI

期刊论文